银河网上赌场官方网址-网上赌场平台犯法吗_百家乐技巧平注常赢法_全讯网新2英文读书(中国)·官方网站

position: EnglishChannel  > Experts in China> Robotic Innovation in Medical Field

Robotic Innovation in Medical Field

Source: Science and Technology Daily | 2023-04-27 10:25:56 | Author: CHI?Wenqiang?&?Misbahul?Ferdous


A?bone and joint surgery robot is?demonstrated?at the 2022 World Robotics Congress, Beijing, Aug. 21, 2022.?(PHOTO:VCG)

By?CHI?Wenqiang?&?Misbahul?Ferdous

Surgical robots are a significant technological advancement in healthcare that emerged in the 1980s to assist clinicians. The da Vinci robot is the most successful platform and has been installed more than 300 units in China.

Using robots in the medical field offers several benefits, including improved patient care, cost reduction, and a safer environment for both patients and clinicians.

The da Vinci robot is a telemanipulator for laparoscopic surgery, which enables surgeons to manipulate dexterous instruments intuitively while also improving surgical precision and stability. Similarly, Edge Medical from China released another four-arm robot that can manipulate three instruments simultaneously with one further arm to hold the endoscope. These robots can be gigantic in size, making it difficult to fit them in an operating room. Beijing Shuri Medical has proposed a single-arm system that can achieve similar surgical outcomes. The arm integrates four snake-shaped instruments together, which are extremely flexible but still offer great strength and stability.

Robots can hugely improve the precision of the surgical procedures while enhancing navigation to deep lesions inside the human body. The robotic navigation system can help the surgeon plan the path for surgical implants inside the bones, especially in orthopedic surgery. The navigation system uses information from pre-operative CT images as well as real-time tracking of the instruments and patients during the operation. Beijing Tinavi Robotics developed a robotic arm that can precisely place the implants following its navigated path, which has already benefited 30,000 procedures in China.

Robots can also reduce health risks to patients and clinicians in hazardous environments, such as reducing exposure to pathogens during the COVID-19 pandemic. Another such example is in radiation reduction in areas where X-ray imaging is heavily relied on. Shanghai Operation Robot is a multi-arm platform used to manipulate elongated instruments such as catheters and wires for vascular intervention. The clinician can sit outside the operating room to perform the procedure while eliminating potential radiation-related health risks. The robotic manipulator can also improve instrument stability since catheters are extremely flexible and unstable to manipulate.

More advanced innovations in medical robotics focus on micro/nanoscale treatment inside the human body. Neuralink starts a new era for Brain-Computer Interface, proposing a "Stitching" robot that can insert micro-sized electrodes into the brain, which can perceive signals from some functional regions.

Not far off from something you would read about in science fiction, people can now swallow a tiny robot for better healthcare. AnX Robotica made a capsule robot named Navicam, whose movements are controlled by clinicians to view the stomach from inside the patient's body. It significantly improves patient comfort while also reducing risks and operational difficulties associated with conventional endoscopic techniques.

Recent developments are geared toward nanobots — tiny machines that operate at the nanoscale level, about a millionth of a millimeter. These robots can be programmed to manipulate cells and other biological materials at the molecular level, making them an exciting new tool for medical research and treatment. One promising application of nanobots is in the field of cell manipulation. By using nanobots, scientists can precisely target and manipulate individual cells, allowing for more accurate and efficient testing of new drugs and therapies. Additionally, nanobots can be used to deliver drugs or other therapeutic agents directly to diseased cells, potentially reducing side effects and increasing effectiveness. The development of nanobots for cell manipulation is still in its early stages, but the potential for this technology to revolutionize medicine is inspiring.

???

These two authors are researchers from Lepu Medical Company.

???

Editor:畢煒梓

Top News

Energy Cooperation Gets New Direction

?Chinese President Xi Jinping sent a congratulatory message to the 7th China-Russia Energy Business Forum in Beijing on November 25, sparking enthusiastic responses from various sectors in both countries.

WEEKLY REVIEW (Dec.3-10)

Liang Wenfeng, founder and CEO of the Chinese AI firm DeepSeek, and "deep diver" Chinese geoscientist Du Mengran are on the annual "Nature's 10" list, which highlights 10 people at the heart of some of the biggest science stories of 2025.

抱歉,您使用的瀏覽器版本過低或開啟了瀏覽器兼容模式,這會影響您正常瀏覽本網頁

您可以進行以下操作:

1.將瀏覽器切換回極速模式

2.點擊下面圖標升級或更換您的瀏覽器

3.暫不升級,繼續瀏覽

繼續瀏覽
百家乐官网博彩金| 立博百家乐官网的玩法技巧和规则| ,| 战神百家乐官网的玩法技巧和规则 | 网上百家乐导航| 桑日县| 百家乐庄闲分布概率| 德清县| 澳门百家乐必赢看| 百家乐官网娱乐网会员注册| 德州扑克 规则| 百家乐赌博出千| 百家乐官网的奥秘| 余杭棋牌世界| 百家乐网上投注系统| 百家乐官网有免费玩| 正品百家乐官网游戏| 百利宫娱乐城信誉| 百家乐游戏补牌规则| 百家乐官网赢钱绝技| 全讯网168268| 大发888df登录| 百家乐电脑赌博| 菲律宾百家乐官网排行| 大发888 迅雷下载| 百家乐官网怎么稳赢| 环球国际娱乐| 百家乐群shozo| 正宗杨公风水24山分金| 百家乐游戏唯一官网站| 百家乐官网德州扑克发牌盒| 中华娱乐城| 大发888娱乐新澳博| 海威百家乐赌博机| 免费百家乐官网计划工具| 百家乐官网巴厘岛上海在线| 百家乐官网真钱在线| 请问下百家乐去哪个娱乐城玩最好呢 | 龍城百家乐的玩法技巧和规则| 百家乐最长的闲| 百家乐官网能战胜吗|